FADC board for COT ASDQ analog outputs

Bill Ashmanskas
Mircea Bogdan
Aseet Mukherjee
Harold Sanders

Outline

- COT ASDQ analog outputs
- VME FADC card
- Cost & schedule
- Power
- Draft schematics
COT ASDQ analog outputs

- 1–3 per card available
 (card covers 2 cells, 1260 cards in COT)
- In practice, bring out 12/quadrant = 96 total channels
- We want, in real time, to look at analog outputs with an oscilloscope:
 - debug noise problems
 - measure gain
 - put scope upstairs, use analog mux to reduce cable count
- But we also want to correlate analog outputs with reconstructed tracks:
 - study 2-track resolution
 - map out dE/dx response
 - tune simulation
- Ideally, want a digital scope read out with event data
VME FADC board

- Basically a 6-channel 500Msample/sec scope, designed for CDF DAQ readout
- Need 2 boards/quadrant; would live in TDC crates
- Board has six copies of
 - differential receiver/amplifier (×1 ~ ×10 gain)
 * input: [−50, 50] ~ [−500, 500]mV
 * Maxim 4145 output: [−500, 500]mV
 * second stage (AD8037) ⇒ [−2, 0]V for FADC
 - SPT 7750 FADC
 * 8 bits/sample at 500 MS/s
 * double buffered to 16 bits at 250 MHz
 * ECL output
 - ECL→TTL latches
 * buffer down to 32 bits at 125 MHz, which FPGA can handle comfortably
 - Altera APEX 20K100E FPGA, 356-pin BGA
 * ~100K gates, 52Kbits RAM (5.5μs ~ 22Kbits)
 * 246 I/O pins, 4 clock input pins, up to 250MHz
 * 1.8V VCC for logic, 3.3V for TTL-compatible I/O
 * successor of Flex 10K family used in trigger boards
- Oscillator: Connor-Winfield GA01-541, 495.8 MHz (in stock), ECL, DIP-16, in principle swappable
More facts & features

- FADC outputs are valid for 2.5ns out of 4ns period; plenty of time for ECL latches
- Firmware-programmable sampling window, nominally 256 nsec (128 samples), delayed 0–8192 ns for L1A
- Not a problem for sampling window to be wider than CDF clock period (tested in Altera simulation)
- Implement standard 42-crossing L1 pipeline as circular memory buffer in FPGA internal dual-ported SRAM
- 4-buffer CDF standard VME readout
- Possibly on-board zero suppression
- Copy VME interface from Chicago trigger boards
- Uncompressed data size: \(\frac{256 \text{ nsec}}{2 \text{ nsec/sample}} \times \frac{1 \text{ byte}}{\text{sample}} \times \frac{6 \text{ channels}}{\text{board}} \times 16 \text{ boards} = 12 \text{ KB/event} \)
- Readout time: \(\frac{2 \text{ boards}}{\text{crate}} \times \frac{768 \text{ bytes}}{\text{board}} \times \frac{\sim 300 \text{ nsec}}{4 \text{ bytes}} \approx 100 \mu\text{sec} \)
- External trigger input (TTL, 50 \(\Omega \)) for standalone mode
- Bandwidth \(\sim 100 \text{ MHz @ } \times 10 \text{ gain} \)
- 4145 allows pole-zero correction (for cable loss) without affecting input termination
- Calibration plan TBD (inject current at input terminator)
- 2 nsec sampling is the fastest we’re able to do with the parts we know how to use
- 2 nsec looks fine for COT pulses
- note TDC time bin is 1 nsec
Analog repeater schematic

Channels to be monitored

<table>
<thead>
<tr>
<th>SL</th>
<th>O</th>
<th>M</th>
<th>I</th>
<th>O</th>
<th>M</th>
<th>I</th>
<th>O</th>
<th>M</th>
<th>I</th>
<th>O</th>
<th>M</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>61</td>
<td>63</td>
<td>65</td>
<td>103</td>
<td>105</td>
<td>107</td>
<td>145</td>
<td>147</td>
<td>149</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>25</td>
<td>27</td>
<td>71</td>
<td>73</td>
<td>75</td>
<td>119</td>
<td>121</td>
<td>123</td>
<td>167</td>
<td>169</td>
<td>171</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>31</td>
<td>33</td>
<td>89</td>
<td>91</td>
<td>93</td>
<td>149</td>
<td>151</td>
<td>153</td>
<td>209</td>
<td>211</td>
<td>213</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>37</td>
<td>39</td>
<td>107</td>
<td>109</td>
<td>111</td>
<td>179</td>
<td>181</td>
<td>183</td>
<td>251</td>
<td>253</td>
<td>255</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>43</td>
<td>45</td>
<td>125</td>
<td>127</td>
<td>129</td>
<td>209</td>
<td>211</td>
<td>213</td>
<td>293</td>
<td>295</td>
<td>297</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>49</td>
<td>51</td>
<td>143</td>
<td>145</td>
<td>147</td>
<td>239</td>
<td>241</td>
<td>243</td>
<td>335</td>
<td>337</td>
<td>339</td>
</tr>
<tr>
<td>7</td>
<td>53</td>
<td>55</td>
<td>57</td>
<td>161</td>
<td>163</td>
<td>165</td>
<td>269</td>
<td>271</td>
<td>273</td>
<td>377</td>
<td>379</td>
<td>381</td>
</tr>
<tr>
<td>8</td>
<td>59</td>
<td>61</td>
<td>63</td>
<td>179</td>
<td>181</td>
<td>183</td>
<td>299</td>
<td>301</td>
<td>303</td>
<td>419</td>
<td>421</td>
<td>423</td>
</tr>
</tbody>
</table>

![Image of analog repeater schematic]

![Image of channels to be monitored]
~1.5 mV noise
~15 mV step signal

Analog repeater

Maxim 4445

FADC card

\(x \times 10 \approx 200 \text{ mV/Div} \)

\(\pm 250 \text{ mV range} \)

300 \(\approx 100 \text{ MHz} \)

\(\approx 2.4 \times 10^7 \)

\(5 \times 10^7 \)

\(20 \text{ Ohm} \)

10\(^{-1}\) - 90\(^{-1}\). Rise \(\leq 3 \text{ nsec} \)
Cost & schedule

- Estimate $10–15K for parts, PCB, & assembly of 2 prototypes
- Per-board parts cost $3K:
 - $100–150
 - $300–350
 - $25
 - Connor-Winfield 495.8 MHz ECL osc, $50
- ~ 3 months engineering effort
- Order prototype parts in next few days
- Probably ready ~ November
 (ideally, optimistically, before end of C-run)
- Build full set of 16 boards (+ spares) by March, probably $4–5K/board
Power

<table>
<thead>
<tr>
<th>component</th>
<th>get</th>
<th>from</th>
<th>how</th>
<th>max</th>
<th>typ</th>
<th>max</th>
<th>typ</th>
<th>avl</th>
</tr>
</thead>
<tbody>
<tr>
<td>FADC latches</td>
<td>-5.2</td>
<td>+5</td>
<td>dc/dc</td>
<td>1.2</td>
<td>1.05</td>
<td>9.11</td>
<td>7.97</td>
<td></td>
</tr>
<tr>
<td>latches</td>
<td>-5.2</td>
<td>+5</td>
<td>dc/dc</td>
<td>0.24</td>
<td>0.17</td>
<td>1.82</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>latches</td>
<td>+5</td>
<td>+5</td>
<td>direct</td>
<td>0.44</td>
<td>0.3</td>
<td>2.64</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>amplifiers</td>
<td>-5.2</td>
<td>+5</td>
<td>dc/dc</td>
<td>0.06</td>
<td>0.06</td>
<td>0.46</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>(total +5)</td>
<td></td>
<td>+5</td>
<td></td>
<td></td>
<td></td>
<td>14.0</td>
<td>11.5</td>
<td>14</td>
</tr>
<tr>
<td>amplifiers</td>
<td>+5</td>
<td>+12</td>
<td>linear</td>
<td>0.06</td>
<td>0.06</td>
<td>0.46</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>FPGAs</td>
<td>+3.3</td>
<td>+12</td>
<td>dc/dc</td>
<td>?</td>
<td>?</td>
<td>0.46</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>FPGAs</td>
<td>+1.8</td>
<td>+12</td>
<td>dc/dc</td>
<td>?</td>
<td>?</td>
<td>0.46</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>(total +12)</td>
<td></td>
<td>+12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.25</td>
</tr>
<tr>
<td>pulldowns</td>
<td>-2</td>
<td>-5</td>
<td>tbd</td>
<td>0.41</td>
<td>0.41</td>
<td>2.48</td>
<td>2.48</td>
<td>2.5</td>
</tr>
</tbody>
</table>

- Total board power \sim 100 W